MCRunjob:

An HEP Workflow Planner for
Grid Production Processing

Greg Graham
CD/CMS Fermilab
Iain Bertram and Dave Evans

Lancaster university
CHEP 2003

Ethos of MCRunjob

Applications in complex production processing environments often need to be
tamed

— Hundreds of input parameters during MC Production
— Heterogeneous runtime environments
— Complex multi-application workflows

— Dependencies and relationships among the metadata often modeled inside of
obscure shell scripts

MCRunjob captures such specialized knowledge and makes it available to non-
expert users

— Metadata and schema oriented descriptions

— Tracks dependencies among metadata

— Tracks synonyms between groups of metadata, versions

— Organization of user registered functions that do the actual work

— Framework driven organization of tasks

Ethos of MCRunjob

MCRunjgb: Abstract W orkflow
N .

\\

Production
Jobs

Workflow
Descriptions
and
Production
Requests

Tracking DB

MCRunjob uses a modular component based architecture.
Schema Modeling: Each application or task has its own schema representation.
ScriptGeneration:Each target script environment has its own generator.
External Services: Each service or interface is described internally by its schema.

MCRunjob Project

In use at DZero since 1999 and at CMS since 2002.

— Supported by respective programs.

— For MC production only so far.
» DZero Monte Carlo Challenges (CHEP 2001)
» CMS Integration Grid Testbed (CHEP 2003)

We are considering a joint DZero/CMS project to address common issues
at Fermilab soon

— The actual code bases have diverged somewhat, but there 1s a common
repository that was started in 2003.

— Joint project name: Shahkar
* (which is Urdu for “Great Job”)
Exploring ways to integrate with experiment frameworks.
— There 1s some integration with DZero framework already going on
— Need to explore ORCA intreractions

Architecture of MCRunjob

e There are three major components of MCRunjob

— Configurator:

» A container for schema describing some well defined application input, task, or
eternal interfaces to DB or grid services

* Implements framework interfaces

» Register functions to handle framework calls, extend own interface, extend schema,
define rules and dependencies to construct values for parameters.

— Linker

 a container for Configurators, checks dependencies, enables inter-configurator
communication.

 a container for “script objects” generated by Configurators
* Runs the framework
— ScriptGen
* Mixin class for Configurators that adds methods for script object generation and
framework method delegation

« All components are implemented in Python

A user who wants to run #/bin/env sh

applications A,B, and C Script scriptA
attaches corresponding Generator scriptB

_ scriptC
Configurators to a Linker.

The Linker verifies that
dependencies are satisfied.

Linker

Once attached, the user
sets values for the various
schema elements defined
in each configurator, and

defines filename rules, ~ ‘

random seed rules, etc. Configurator A Configurator B | Configurator C |

The user then executes the
framework. Each
Configurator may generate
script used to run the /bin/sh script /bin/sh script /bin/sh script
: . to run App A to run App B to run App C
corresponding application.
The scripts are collected by a
ScriptGen object.

The ScriptGen object is
obviously a very specialized
component. Therefore,
Configurators are able to
delegate framework
handlers to ScriptGen
objects. This allows script
generating code that targets
specific envoronments to
be collected in a single
ScriptGen module.

Multiple ScriptGen objects
can be attached at once,
allowing two different
environments to be
targeted by the same
workflow description.

#!/bin/env sh
Script scriptA
Generator scriptB
scriptC

/bin/sh script /bin/sh script

to run App A to run App B

A
AN
A

\
\
N

(If delegated to
Script Generator)

Configurator C

/bin/sh script
torun App C

Configurator Functionality - 1

Configurators re-implement the UserDict() interface with built-in triggers on
reads and writes

— Schema elements must be declared before use

— Triggers are typically defined in the constructor, but can be added dynamically
also.

Interfaces exist to extend the schema of a Configurator
— Also possible to “lock™ the schema to prevent further alterations.
Parameter values can reference other Configurators

— Inter-Configurator parameter lookup 1s implemented using a global read triggers
on all of the schema elements.

 Different lookup behaviors (ie: CMS vs. DZero) possible by defining different triggers.
Dependencies on other Configurators are explicitly declared
— This is required for parameter lookup in the CMS implementation

Configurator Functionality - 2

e Construction of parameter values

— User can register functions, keyed by schema element, into a that will be
called by the read trigger

* eg- Filename rules, RunNumber rules, Random Seed rules, etc.

* Framework handling
— Handling of framework calls can be done 1n specific methods organized
by inheritance
» This is considered deprecated, but it is not disallowed.

— User can register functions to handle specified framework calls.

— User can also specify delegation of framework calls to other Configurators
that satisfy the ScriptGen interface

« Useful, for example, when trying to gather all related script generating
functions into a single module

Configurator Descriptions and
Namespaces

Configurators themselves are also described by an extensible list of key-value
pairs.

— Class ConfiguratorDescription(keyl=vall, key2=val2, etc)

— This 1s useful to assign “meta-metadata” to the grouping of application metadata

— But also: parameters are specified globally in a Linker space by name and
ConfiguratorDescription.
» eg- ::ConfigDesc:ParamName
— And: The ConfiguratorDescriptions also function as namespaces

» To keep namespaces distinct, one can also give them arbitrary aliases. This mechanism
is also used to distinguish Configurators of a common type inside of the Linker space.

— Studying whether Configurators should contain themselves.
» A pilot project at DZero is studying this.

Linker Functionality

Container for Configurators and ““script objects”

Linker guarantees that dependencies are satisfied by adding Configurators
in serialized order.

* Exception thrown when this is not satisfied.

A script object may be a bash script, a derivation inVirtual Data
Language, a DAG node, etc.

Also runs the framework methods. Examples:

PreJob: runs before each script object
MakelJob: creates each script object
Reset: runs between script objects

RunJob: Submits a suitable “script object” to some Grid interface or batch
queue

Framework methods are also user definable and user callable.

ScriptGen Interface

Implemented as a mixin class for Configurators

Specifies methods for generating scripts

— HandleFrameworkCall: a callback for Configurators to delegate handling of
framework calls; mainly those that generate script objects

» Used so that all related “script generating” code can be gathered into a single module.

— MakeScript: a method called by the linker to collect related script objects into a
composite script object.

Example ScriptGen objects:
— Impala scripts (CMS MC production scripts)
— RCP based scripts at DZero
— Virtual Data Language of Chimera
— MOP DAGs for Condor-G/DAGMan

A Linker can support multiple ScriptGen objects simultaneously

Macro Script Language

The Linker has a facility to read “macro” scripts and parse lines
one by one

— Functions available include:

 Attaching and naming Configurators, setting parameter values, adding schema
values, defining synonyms, executing the framework or selected frmework calls,
executing selected methods, exception handling, executing other scripts

— Procedural constructs supported for handling multiple jobs.

Parsing 1s done by Configurators themselves

— Users (experienced ;-) can extend the “macro” script interface by registering
their own parser functions to the Configurators.

— Multiple Parsers can be attached; first Parser to handle the line “wins”
Many things are missing:

— Full functionality is not yet available in the “macro” language

— Needs parser that supports both expressions and conditionals

— Syntax needs to be reviewed as a whole.

Synonyms and Ontology

« Configurators also contain an internal synonym table to automatically keep
track of translations between schema elements of different Configurators

— Example:
» cfg CMSIM synonym RanSeed] ::generator: CMKIN:RunNumber
» cfg CMSIM print
— Causes resolution of RanSeed1 by synonym lookup when parameter is not
given
* implicit synonyms- when schema elements have the same name
— eg- I didn’t have to say “synonym
RunNumber ::generator: CMKIN:RunNumber”
— These ontological definitions can be stored in files or database tables.

— These can be used to “connect” Configurators across different versions or
interface definitions on the same Configurator.

Stored Commands

* Configurators can also have a user specified list of stored
commands to execute during framework operation
— These commands are in the macro script language
— Eg- cfg CMSIM addcommand on reset inc RunNumber

* When “reset” framework method 1s invoked, the command “inc RunNumber”
is invoked on the CMSIM Configurator.

* The CMSIM Configurator has to have a Parser registered to it that can
interpret “inc RunNumber”

* Together with synonyms and parameter lookup, stored
commands can allow Configurators to track dynamically
changing values in other Configurators.

MCRunjob at Runtime: SAM/JIM

execution service for Dzero

« Innovations from SAM/JIM grid

— XML based monitoring wrappers Send Monitor
Inlo
— XML database backend for XML
persistent storage of jobs
— Linker running as a server with Create MC Job Rm]nh Monitor
GSI authentication Startup_
Link e
— Macro preprocessor for abstract e T‘"" -
AT N e 5 erry'er
planning
— Interface Wlth SAM database f.f""fpl'l.ll'i:‘hhiru.-__’ Info

. # Periodic Updates
production request system MC Job ’ T
Farm Nodde

Production Job Configuration
Management

* Application designer:

— writes down schema needed to configure desired application or task

— writes ontological configuration files to define dependencies,
synonyms, and chain behaviors

— writes down ontological configuration files to handle possible version
changes in schema

« Application deployment:

— writes configuration files to define physics parameters, number of
events, production assignments.

e Regional Center Contact:

— writes configuration file for his/her regional center (if applicable)

Fun with Configurators

* LNameStreamConfigurator

— Can register a function to this Configurator that will fill a
LogicalNameList with names (eg- LFNs, PFNs)

— During framework operation, this Configurator will iterate over the list,
setting the schema element “OutputSpec” to the current value.

* InputPluginConfigurator

— InputPluginBashFile will 0 McRunjob
parse environment variable o,
definitions in a sh script and
expose these by including the MCRunjob Linker

symbols as schema elements P s
with the corresponding value:s | IS IS i Mol
— InputPluginRefDB will obtain - '
schema elements and values RefDB:
Production

from a web server with Assignments
database backend

Fun with Configurators

RogueConfigurator
— No schema whatsoever- user defines it all at runtime!

TableConfigurator

— Derives from LNameStream, but has multiple schema elements. Can
read from a table file or a database table and iterate over the rows

ParamSweepConfigurator

— Similar to a TableConfigurator, but has added logic to generate its own
table internally according to some rules.

MOPDagGen

— A ScriptGen Configurator that takes scripts generated by other
ScriptGens, turns them into DAG nodes, and creates a master DAG.

RunJobConfigurator
— Takes specified script object, submits it to batch interface or grid portal.

No Tool 1s Complete Without a
GUI

MCRunjob has a Tk based GUI that functions as a wrapper
around existing MCRunjob classes

— No special classes needed: there 1s a single GUILinker wrapper class
and a single GUIConfigurator wrapper class.
Configurators have a “hot swappable” internal dictionary
implementation

— TK GUI Linkage is accomplished using the “HotSwap” method to
replace the default internal UserDict with one that has Tk linkage.

— Other GUI packages are possible by writing new wrapper classes and,
perhaps, new dictionaries with different Linkage.

Screenshot of GUI 1s next:

No Tool 1s Complete Without a
GUI

. J T The Linker

o " The Linker =E X
The Linker: localhost.localdomain Configurator : global- CM3Regional Center

File Linker Configurator Framework File Configurator Framework

Configurator: Hide | . Availlable Frames:

Configurator: Show | global- CM3RegionalCenter Hide I

REGIONAL_CENTER: [FNAL

e Conf igi.ir‘at..:rr- R

' Choose a Configurator type from the list belows:
CARFRunMumber: |1
CARFRunStream
RanSeed: |
RanSeedl:
RanSeedZ:
ConfigFileName: | _FNAL.conf

DatasetMName: | m_h It._ [

ReqMumberOfEvents:

Relationship to Other Projects

« SAM

— One of the first great applications of MCRunjob was to automatically
generate the metadata needed by the SAM system 1n order to store MC
production results.

— Closer integration with SAM i1s proceeding apace in the context of
automatic generation of MC jobs from request metadata stored in SAM

« CHIMERA
— MCRunjob has a ScriptGen which produces Virtual Data Language

— Conceptually, Configurator schemas are like transformations,
Configurators with values are like derivations, and
ConfiguratorDescriptions and dependencies define “types” on the data
appearing at the endpoints of a transformation.

— MCRunjob can either generate VDL, VDL+wrapper scripts (custom
transformations), or function as an abstract planner.

Relationship to Other Projects

« SAM/JIM

— In the JIM grid execution environment, MCRunjob scripts are sent as
the job instead of shell scripts or conventional executables.

— MCRunjob macro scripts are GSI-authenticated and re-parallelized by a
remote MCRunjob Linker process.

— Delayed abstract planning!

e Data Provenance

— MCRunjob i1s already capable of a fully declarative specification of
workflow, and can communicate with external databases and servers.

— Besdies a bare specification of parameters, MCRunjob keeps track of
the dependencies that existed among parameters when they were
created.

Future Plans

Formalize the DZero/CMS joint project
— Shahkar
— Language Definition
Continue close cooperation with GriPhyN and better integrate MCRunjob
into the Chimera environment.
— Add tools to define wrapper scripts with transformations
— Delayed abstract planning
Add features:
— Configurators for generic application monitors (BOSS)
— Grid portals (currenlty MOPDagGen and VDLScriptGen)
— XML representations and XML database
Explore runtime functionality

— Provenance, external parameter lookup services, and application monitoring
services in experiment frameworks? (ala GANGA?)

Conclusions/Questions

MCRunjob provides functionality to model complex
workflows found in MC Production.
— Is it possible/desirable to bring this to a finer granularity needed in
analysis?
MCRunjob 1s a powerful workflow planner with modular
component based interfaces to external services.

Prpearation for Analysis

— Take it from a former Kaon physicist: Sharpening our understanding of
MC production processing still has much to teach us about the more
complex environments expected in physics analysis.

» Understanding the behavior of the underlying Grid services and the

coming challenges of knowledge management in the face of clean
predictable input and measurable results still has value.

References

« USCMS MCRunjob page :

— http://www.uscms.org/scpages/subsystems/DPE/Projects/MCRunjob
e DZero MCRunjob page :

— http://clued0.ftnal.gov/mc_runjob/mainframe.html
e Previous Talks and Papers:

— Tools and Infrastructure for CMS Distributed Production (4-033), G.E.
Graham, et al. Proceedings of Computers in High Energy Physics 2001
(CHEP 2001), Beijing, China

— Dzero Monte Carlo Production Tools (8-027), G.E. Graham, et al..
Proceedings of Computers in High Energy Physics 2001 (CHEP 2001),
Beijing, China

— Dzero Monte Carlo, G.E. Graham. Proceeding of Advanced Computing
and Analysis Techniques 2000 (ACAT 2000), Fermilab, Batavia, IL

« ggraham@fnal.gov evansde@itnal.gov

mailto:Ggraham@fnal.gov

	MCRunjob: An HEP Workflow Planner for Grid Production Processing
	Ethos of MCRunjob
	Ethos of MCRunjob
	MCRunjob Project
	Architecture of MCRunjob
	Configurator Functionality - 1
	Configurator Functionality - 2
	Configurator Descriptions and Namespaces
	Linker Functionality
	ScriptGen Interface
	Macro Script Language
	Synonyms and Ontology
	Stored Commands
	MCRunjob at Runtime: SAM/JIM
	Production Job Configuration Management
	Fun with Configurators
	Fun with Configurators
	No Tool is Complete Without a GUI
	No Tool is Complete Without a GUI
	Relationship to Other Projects
	Relationship to Other Projects
	Future Plans
	Conclusions/Questions
	References

